Continuity of Percolation Probability on Hyperbolic Graphs

C. Chris Wu'

Received Jully 24. 1996; final October 31. 1996

Abstract

Let T_{k} be a forwarding tree of degree k where each vertex other than the origin has k children and one parent and the origin has k children but no parent $(k \geqslant 2)$. Define G to be the graph obtained by adding to T_{k} nearest neighbor bonds connecting the vertices which are in the same generation. G is regarded as a discretization of the hyperbolic plane H^{2} in the same sense that $Z^{\prime \prime}$ is a discretization of R^{d}. Independent percolation on G has been proved to have multiple phase transitions. We prove that the percolation probability $\theta(p)$ is continuous on [0.1] as a function of p.

KEY WORDS: Percolation; percolation probability; hyperbolic graphs.

1. INTRODUCTION

Let T_{k} be a forwarding tree of degree k, where each vertex other than the origin has k children and one parent and the origin has k children but no parent ($k \geqslant 2$). Define G to be the graph obtained by adding to T_{k} nearest neighbor bonds connecting the vertices which are in the same generation (see Fig. 1). Independent percolation on the hyperbolic graph G was first studied by Benjamini and Schramm. ${ }^{(2)}$ The name hyperbolic graph comes from the fact that G can be regarded as a discretization of the hyperbolic plane H^{2}. It was proved in ref. 2 that for independent percolation on G there exists no, infinitely many, or a unique infinite clusters, respectively when the parameter p is small, intermediate, or close to 1 (see also ref. 7 for results of Ising/Potts models on G). In order to make our statement precise, we first introduce a few notations. Independently declare each site of G to be open with probability p and closed with probability $1-p$.

[^0]

Fig. I. G is obtained by adding T_{3} horizontal nearest neighbor bonds connecting equalgeneration sites of T_{3}.

Write P_{p} for the resulting probability measure and E_{p} the expectation. For any set of sites $A \subset G$ and any site $x \notin A$ denote by $x \leftrightarrow A$ the event that there exists a sequence of distinct sites $y_{0}, y_{1}, \ldots, y_{n}$ such that $y_{0}=x$ and $y_{n} \in A$, and for any $1 \leqslant i \leqslant n, y_{i-1}$ and y_{i} are nearest neighbors and y_{i} is open. Note that for convenience y_{0} is not required to be open (but y_{n} is). Denote by $o \leftrightarrow \infty$ the event that the above-defined sequence is infinite with $y_{0}=o$, the origin. Define

$$
\theta(p)=P_{p}(o \leftrightarrow \infty)
$$

and

$$
p_{c}=\inf \{p>0: \theta(p)>0\}
$$

Let $\partial B_{\prime \prime}$ be the set of sites in the nth generation of o (so $\left|\partial B_{n}\right|=k^{\prime \prime}$) and let $B_{n}=\bigcup_{k=0}^{\prime \prime} \partial B_{k}$, where $\partial B_{0}=\{0\}$. For any site $x \in G$, denote by $x+B_{n}$ the shift of B_{n} by x, and by $x+\partial B_{n}$ the shift of ∂B_{n} by x, which represents the set of sites in the nth generation of x. When it will not cause confusion, we will also use B_{n} to denote the set of bonds which have both end points in B_{n}. Write $x+G$ for the shift of G by x, which represents all of the descendants of x. Now, $x+G$ is isomorphic to G.

For $p<p_{c}, \theta(p)=0$ and hence it is a continuous function of p. For $p \geqslant p_{c}, \theta(p)$ is continuous from the right by a simple argument of Russo ${ }^{(6)}$ (see also ref. 4, p. 118). Russo's argument is as follows. $\theta(p)$ is the limit of the decreasing sequence $P_{p}\left(o \leftrightarrow \partial B_{n}\right)$ as $n \rightarrow \infty$. Now, $P_{p}\left(o \leftrightarrow \partial B_{n}\right)$ is a continuous function of p since the event $o \leftrightarrow \partial B_{n}$ depends only on the status of the finitely many sites in B_{n}. So $\theta(p)$ is upper semicontinuous,
hence it is continuous from the right since it is a nondecreasing function of p. For continuity from the left, it was proved by van den Berg and Keane ${ }^{(3)}$ (see also ref. 4, p. 119) that if p is strictly above p_{c} and if the infinite cluster is unique, then $\theta(p)$ is continuous from the left. However, this method does not work if p is in the region where there are infinitely many infinite clusters or if $p=p_{c}$. In this note we use an argument similar to that of Barsky et al. ${ }^{(1)}$ and that of Pemantle ${ }^{(5)}$ to prove that for any $p \geqslant p_{c}, \theta(p)$ is continuous from the left. We therefore have the following theorem.

Theorem. For independent percolation on the hyperbolic graph G, $\theta(p)$ is a continuous function of p on $[0,1]$. In particular, $\theta\left(p_{r}\right)=0$.

For any site $x \in G$ write $\theta^{v}(p)=P_{p}(x \leftrightarrow \infty)$. For different sites x and $y, \theta^{\prime \prime}(p)$ and $\theta^{v}(p)$ may be different functions since the graph G is inhomogeneous. But it is not hard to see by the FKG inequality that for any p either $\theta^{x}(p)=0$ for all $x \in G$ or $\theta^{x}(p)>0$ for all $x \in G$. It can be shown using the same argument presented in the next section that $\theta^{x}(p)$ is continuous in [0,1] for any $x \in G$.

2. PROOF OF THEOREM

Define

$$
Y_{n}=\left\{y \in \partial B_{n}: o \leftrightarrow y \text { in } B_{n}\right\}
$$

Denote by $\left|Y_{n}\right|$ the number of sites in Y_{n}. We have the following result.
Lemma 1. $\lim _{n \rightarrow \infty}\left|Y_{n}\right|=\infty$ a.s. on the event $o \leftrightarrow \infty$.
The proof of the lemma is not difficult. If there exists a subsequence $\left\{Y_{u_{k}}\right\}$ such that $\left|Y_{n_{k}}\right|$ stays bounded, then the probability that none of the sites in $Y_{n_{k}}$ is connected to ∞ is bounded away from zero, hence eventually $\left|Y_{n_{k}}\right|=0$, a contradiction to $o \leftrightarrow \infty$. For a detailed argument see p. 122 of ref. 1.

Lemma 2. If $\theta(p)>0$, then there exists $\delta>0$ such that $\theta(p-\delta)>0$.
Proof. For any number $A \in(0, \theta(p))$, choose M such that $M>1 / A$. From Lemma 1, $P_{f}\left(\left|Y_{n}\right|>M\right) \rightarrow \theta(p)$ as $n \rightarrow \infty$. So one can choose an integer $N=N(M, A, p)$ such that $P_{p}\left(\left|Y_{N}\right|>M\right)>A$. Now, $P_{p}\left(\left|Y_{N}\right|>M\right)$ is a continuous function of p since the event $\left|Y_{N}\right|>M$ depends only on the status of the finitely many sites in B_{N}. So one can choose $\delta>0$ so that

$$
\begin{equation*}
P_{p-i}\left(\left|Y_{N}\right|>M\right)>A \tag{1}
\end{equation*}
$$

Now fix the site density to be $p-\delta$. For each $x \in Y_{N}$, define

$$
Y_{N}(x)=\left\{y \in x+\partial B_{N}: x \leftrightarrow y \text { in } x+B_{N}\right\}
$$

For different x and y of $Y_{N},\left|Y_{N}(x)\right|$ and $\left|Y_{N}(y)\right|$ are i.i.d random variables having the same distribution as $\left|Y_{N}\right|$. So we have defined a Galton-Watson process which is supercritical since, by (1), $E\left|Y_{N}\right| \geqslant E\left|Y_{N}\right| I_{\mid Y_{N \mid>M}} \geqslant$ $M A>1$. So the probability that the above defined Galton-Watson process survives is positive. The proof is then completed by noticing that the percolation process with site density $p-\delta$ dominates the Galton-Watson process in the sense that if the Galton-Watson process survives, then $0 \leftrightarrow \infty$.

An immediate consequence of Lemma 2 is that $\theta\left(p_{c}\right)=0$, since if $\theta\left(p_{c}\right)>0$, then $\theta\left(p_{c}-\delta\right)>0$ for some $\delta>0$, a contradiction to the definition of p_{c}.

Proof of the Theorem. As explained in the introduction, we only need to prove that $\theta(p)$ is continuous from the left. If $\theta(p)=0$, then $\theta(p)$ is clearly continuous from the left at p. Assume $\theta(p)>0$. By Lemma 2 there exists $\delta>0$ such that $\theta(p-\delta)>0$. For any $\varepsilon>0$ choose an integer M large enough such that $(1-\theta(p-\delta))^{\prime \prime}<\varepsilon$. This inequality is still valid if δ is replaced by δ^{\prime} with $0<\delta^{\prime} \leqslant \delta$ since $\theta(p)$ is a nondecreasing function. As in the proof of Lemma 2, for the above chosen M, there exists a positive integer N such that $P_{p}\left(\left|Y_{N}\right|>M\right)>\theta(p)-\varepsilon$. By continuity of $P_{p}\left(\left|Y_{N}\right|>M\right)$ as a function of p, there exists $\delta_{0}>0$ such that $P_{p-j^{\prime}}\left(\left|Y_{\|}\right|>M\right)>\theta(p)-\varepsilon$ when $\delta^{\prime}<\delta_{0}$. Hence we have that when $\delta^{\prime}<\min \left(\delta_{0}, \delta\right)$,

$$
\begin{aligned}
& \theta\left(p-\delta^{\prime}\right) \\
& \quad=P_{n-\delta^{\prime}(0 \leftrightarrow \infty)} \\
& \quad \geqslant P_{p-\delta^{\prime}\left(\left|Y_{N}\right|>M, \text { and there exists } x \in Y_{N} \text { such that } x \leftrightarrow \infty \text { in } x+G\right)} \quad \geqslant P_{p-\delta^{\prime}}\left(\left|Y_{N}\right|>M\right)\left[1-\left(1-\theta\left(p-\delta^{\prime}\right)\right]^{M} \quad\right. \text { by independence } \\
& \quad>(\theta(p)-\varepsilon)(1-\varepsilon) \geqslant \theta(p)-2 \varepsilon
\end{aligned}
$$

So $\theta(p)-\theta\left(p-\delta^{\prime}\right)<2 \varepsilon$. This completes the proof, since ε is arbitrary.

ACKNOWLEDGMENTS

The author wishes to thank Itai Benjamini and Oded Schramm for sending him ref. 2 prior to publication. He also thanks a referee for several valuable suggestions on improving the presentation in the paper.

REFERENCES

I. D. J. Barsky, G. R. Grimmett. and C. M. Newman. Percolation in half-spaces: Equality of critical densities and continuity of the percolation probability. Prob. theory Related Fichds 90:111-148 (1991).
2. I. Benjamini and O. Schramm, Percolation beyond Z^{d}, preprint.
3. J. van den Berg and M. Keane, On the continuity of the percolation probability function, in Conference on Modern Anal!sis and Probahility, R. Beals at al., eds. (American Mathematical Society, Providence, Rhode Island, 1984), pp. 61-65.
4. G. R. Grimmett, Percolation (Springer-Verlag. Berlin, 1989).
5. R. Pemantle. The contact process on trees. Am. Proh. 20:2089-2116 (1992).
6. L. Russo, A note on percolation, Z. Wuhrsch. Verir. Geh. 43:39-48 (1978).
7. C. C. Wu, Ising models on hyperbolic graphs. J. Stat. Phess. 85:251-259 (1996).

[^1]
[^0]: ${ }^{1}$ Department of Mathematics, Penn State University, Beaver Campus, Monaca, Pennsylvania 15061 ; e-mail: wu $(4$ math.psu.edu.

[^1]: (commumicoted by T. Nemmed!.

